Progress of cancer immunotherapy and its future perspectives

Yutaka Kawakami

Division of Cellular Signaling
Institute for Advanced Medical Research
Keio University School of Medicine
Cancer immunotherapy

Current status and future perspectives

• Cancer immunotherapy is now a promising therapy!
 – Durable responses for advanced cancer patients with multiple cancer types
 – Immune-checkpoint blockade (PD-1/PD-L1, CTLA4)
 – T-cell based adoptive cell therapy (TIL, TCR/CAR-T cells)

• The clinical issues to be solved;
 – Identification of biomarkers for personalized therapy
 • Selection of appropriate patients / Selection of appropriate immunotherapy
 – Development of combination immunotherapy
 particularly for non-responsive patients to the current immunotherapy

• Further understanding of immunopathology of cancer
 particularly in tumor microenvironment and it’s modulation!
 – Individual difference of immune status in cancer patients
 – It’s correlation with response to various cancer therapies
 – Multiple mechanisms of immune-evasion; Appropriate interventions!
 – Personalized immunotherapy based on the immune-evaluation!
 – Combination immunotherapy targeting multiple key regulation points!
Cancer immunotherapy

- Active immunization (Cancer vaccines)
 - Prophylactic vaccines for microbes
 - Adjuvant vaccines to prevent relapse
 - Immunotherapy to reduce tumors

- Non-specific immunomodulators
 (BCG, OK432, PSK, etc)

- Tumor Ags
 (peptides, proteins, DNA etc)

- Tumor extracted Ags

- Dendritic cells pulsed with tumor Ags

- Modified cancer cells

- Tumor Ag reactive T-cells

- PBMC
 + Tumor Ags
 + Cytokines
 + TCR/CAR transduction

- TIL
 + Cytokines

- Allogeneic lymphocytes
 (Allo-BMT, DLI)

- Reversal of immunosuppression
 (PD-1/PD-L1, etc)
Important issues for development of immunotherapy

- **Survival**
 - Months

Current immunotherapy (e.g. anti-CTLA-4 / PD-1 Ab)

Standard therapy (e.g. Chemotherapy / molecular target therapy)

- **Biomarkers for personalized therapy**
 - Selection of appropriate patients
 - Selection of appropriate immunotherapy

Further understanding of human cancer immunology!

- Improvement of immunotherapy by combination immunotherapy?
- Non-responders convert to responders

Immunomonitoring methods?

Clinical evaluation?
- irRC, irRECIST, delayed clinical effects
Positive and negative immune responses to cancer

- Oncogene triggered immunosuppression
- Anti-tumor T-cell triggered immunosuppression

Immunosuppressive cells

- **Oncogene triggered immunosuppression**
 - Myeloid derived suppressor cells (MDSC)
 - Regulator T-cells (Treg)

Cancer cell
- Passenger mutations
- Driver mutations
- Gene alteration

Dendritic cell
- Tumor Ags
- Chemokine, CXCL13, CCL4
- Cytokine, IL15
- HLA

Cytotoxic T-cells
- Tumor Ags
- T-cell receptor
- PD-1
- PD-L1
- IDO
- IFN-γ

Immunosuppressive molecules (e.g. TGF-β, VEGF, PGE2)

Local negative immune-feedback Adaptive resistance

Environmental factors
- smoking, diet/obesity
- microbiota, infection history
Immunotherapy using Ab specific for targets on T-cells

Anti-PD-1Ab (Nivolumab)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Response rate</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>26/94</td>
<td>28%</td>
</tr>
<tr>
<td>RCC</td>
<td>9/33</td>
<td>27%</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>14/76</td>
<td>18%</td>
</tr>
</tbody>
</table>

Durable responses (over 1 year or more) in 20 of 31 (65%) responders

Topalian SL, et al, NEJM 2012

Anti-PD-L1Ab

<table>
<thead>
<tr>
<th>Condition</th>
<th>Response rate</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>3/16</td>
<td>19%</td>
</tr>
<tr>
<td>RCC</td>
<td>2/17</td>
<td>12%</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>4/15</td>
<td>16%</td>
</tr>
</tbody>
</table>

Less immune-adverse effects than anti-CTLA4 Ab

Brahmer JR et al, NEJM 2012

Anti-CTLA4 Ab (Ipilimumab)

- Median Survival: 10mo vs 6.4mo (n=676)

Hodi FS, et al, NEJM 2010

Diagram:

- **Effector T cells**
 - PD-1
 - (-)
 - CTLA4
- **Cancer cells**
 - PD-L1
 - CD80/86
- **T reg**

CTLA-4/Treg is involved in peripheral tolerance → More autoimmune AE
Human tumor antigens recognized by tumor infiltrating T-cells

- **Mutated antigens derived from DNA alterations in cancer cells**
 (β-catenin, etc) SYLDSGIH\(\text{S}(F)\) \(\rightarrow\) acquire HLA-binding

- **Viral related antigens**
 (HPV-E6/E7)

- **Cancer-testis antigens**
 (MAGEs, NY-ESO-1)

- **Tissue specific antigens**
 (MART-1/Melan-A, gp100)

- **Over-expressed antigens**

- **Allo-antigens**

- **Others**

Mechanisms for T-cell epitope generation

- **Neo-antigens**

 - Cancer cell
 - T cell
 - Peptide splicing

 - Other components
Novel personalized immunotherapy targeting individual mutations

- Identification of mutations by exomic-sequencing of autologous cancer cells

- Prediction of HLA binding peptides by computer argorithsms

- Confirmation of T cell epitopes by
 - *in vitro* peptide induction of T cells
 - immunization of HLA transgenic mice
 - using HLA tetramers

- Active immunization with peptides / mRNA
- ACT with TIL / TCR-transduced T cells
Issues to be solved in the immuno-checkpoint blockade

• **When used?** Advanced cancer, frontline treatment, adjuvant setting

• **When stopped?** How long should be used? (high cost, economical issues)

• **Personalized immunotherapy**
 – Unresponsive cancer: pancreas ca., MSS-CRC, myeloma, prostate ca,
 – Non-responders convert to responders

 Biomarkers (PD-L1 exp, CD8+T cell infiltration, DNA mutations, MDSC, Treg, etc) through systematic analysis of clinical trials (Omics, microbiota, immuno-analysis)

 Pretreatment, early on-treatment

 Biomarkers can be new treatment targets

• **Combination immunotherapy with personalized interventions**
 – Immunogenic cancer cell death, adjuvant, vaccine, immune-regulators
 – Enhanced anti-tumor effects w/o increase of adverse effects?
 – Which combination? Concurrent vs sequential?
 – **Combination of chemotherapy / molecular target therapy**
 w/ checkpoint blockade: high immunogenic mutation (melanoma, NSCLC)
 w/ ACT: less immunogenic leukemia, NSCLC, etc,
Combined immunotherapy targeting multiple key regulation points in anti-tumor T cell response

Tumor antigen vaccine
- Mutated Ags
- Cancer stem cell Ags

Augmentation of dendritic cell function
- Adjuvant (TLR3, STING), Ab (CD40 agonist)

Cancer
- NKT/NK/γδT
- Tumor Ag
- HLA

Tumor Ag
- (-)
- T-cell activation / expansion
- Cytokines (IL2, IL7, IL15, IL21)
- Agonist Ab (4-1BB, OX40)

Dendritic cell
- Tumor Ag
- HLA
- T-cell activation / expansion
- Cytokines (IL2, IL7, IL15, IL21)
- Agonist Ab (4-1BB, OX40)

Anti-tumor T cells
- PD-1
- PD-L1

Cancer
- Cox2
- IDO/TDO

Immunosuppressive molecules /cells
- TGF-β, VEGF, IL10, IL6, PG-E2, T-reg, MDSC

In site tumor destruction
<Immunogenic cell death>
- Chemotherapy • Ab • physical • Virus, etc

Reversal of immunosuppression
- Signal inhibitors, Chemotherapy, IDO inhibitor, Ab (CTLA4, PD-1, LAG3, CCR4, TIM3, TIGIT), RNAi, etc
Adoptive cellular immunotherapy using tumor antigen specific *ex vivo* cultured T-cells

Tumor infiltrating T-cells

- cytokine

Blood T-cells

- Tumor Ag stimulation
- Gene transfer of tumor Ag receptor

TCR: T-cell receptor

CAR: chimeric Ag receptor

CD3

CD8

TCR

Melanoma

Cervical ca

HLA

Tumor Ag

Recognition w/o HLA
Important issues to be solved for developing effective immunotherapy

- Identification of Biomarkers?
- Further understanding of human cancer immunology in tumor microenvironments!
- Combination immunotherapy?

Personalized immunotherapy based on the immune evaluation

Survival

Standard therapy

Current immunotherapy

- Anti-PD-1/PD-L1 Ab +
 - Anti-CTLA4 Ab (Other costimulatory mole.)
 - IDO/TDO inhibitor
 - Molecular target / chemotherapy
 - Radiation
 - Cancer vaccine
 - T cell ACT
 - Novel therapies
日本における個別化・複合がん免疫療法開発の課題

＊日本での複合免疫療法の臨床試験実施と病態解析研究を！
・複合免疫療法臨床試験のための企業間連携はすでに進めている！
・新たな産学官連携の構築が必要（win-win situation, high cost, 得意分野）！

-アカデミアシーズ・ノウハウの効率的な企業への受け渡し
・日本医療研究開発機構(AMED)(Japan Cancer Research Project)でのシーズ開発
・複合免疫療法の医師主導臨床試験の実施を！（AMEDにも期待？）
・企業にとって 真に有用なシーズ、適切な組み合わせ、評価法と対策の提言！

-企業治験におけるアカデミアによる病態解析（治療効果・副作用機序）
・治験段階での免疫学的解析一＞次のステップのためのシーズ（診断・治療標的）！
・治験の空洞化問題（臨床研究中核病院）
・企業にとって 真に有用な評価法、臨床データとその解釈、さらにその検証！

・全国レベルでのがん患者ネットワークの構築、臨床検体収集システム、
各種システム生物学的解析拠点体制の構築 ＜AMEDへの期待！＞
・米国NCIの全国ネットワーク（e.g. 肺癌変異シークエンスシステム）
・米国GoogleのCancer Immunotherapy開発への参画？
・日本における産官学コンソーシアムの確立（議論の場の提供）
＜米国SITC / CRI, EU-CIMT＞
新しい医療の健全な均てん化・教育

・異なる治療効果判定基準
 • RECISTだけでは不十分（irRCやirRECISTの併用）

・化学療法や分子標的治療薬とは異なる副作用と対策
 • 免疫性副作用（皮膚炎、甲状腺炎、腸炎、肝炎など）
 • 間質性肺炎や下垂体炎、筋無力症などの重篤、致死的な副作用
 • 適正使用ガイドが作成されており、医療従事者は十分に熟知する必要

・多職種医療チームへの教育
 • ガイドライン
 • 医師はもちろんのこと、がんチーム医療において、薬剤師、看護師など広く各職種への教育体制も重要